Domination with Respect to Nondegenerate and Hereditary Properties
نویسنده
چکیده
For a graphical property P and a graph G, a subset S of vertices of G is a P-set if the subgraph induced by S has the property P . The domination number with respect to the property P , is the minimum cardinality of a dominating P-set. In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate and hereditary properties when a graph is modified by adding an edge or deleting a vertex.
منابع مشابه
On Equality in an Upper Bound for the Domination Number with Respect to Nondegenerate Properties
For a graph property P and a graph G , a subset S of vertices of G is a P -set if the subgraph induced by S has the property P . The domination number with respect to the property P , denoted by γP(G) , is the minimum cardinality of a dominating P -set. Any property P satisfied by all edgeless graphs is called nondegenerate. For any graph G with n vertices and maximum degree ∆(G) , γP(G) ≤ n−∆(...
متن کاملDomination with respect to nondegenerate properties: bondage number
For a graphical property P and a graph G, a subset S of vertices of G is a P-set if the subgraph induced by S has the property P . The domination number with respect to the property P , denoted by γP(G), is the minimum cardinality of a dominating P-set. The bondage number with respect to the property P of a nonempty graph G, denoted bP(G), is the cardinality of a smallest set of edges whose rem...
متن کاملGorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کاملRoman domination with respect to nondegenerate graph properties: vertex and edge removal
For a graph property P and a graph G, a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. A P-Roman dominating function on a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2 and the set of all vertices with label 1 or 2 is a P-set. The P-Roman domination number γPR(G) of G is the minimum of Σv∈V (...
متن کاملSome properties and domination number of the complement of a new graph associated to a commutative ring
In this paper some properties of the complement of a new graph associated with a commutative ring are investigated ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008